Received 21 July 2003

Accepted 23 July 2003

Online 31 July 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong Li, Duan-Jun Xu* and Kai-Liang Yint

Department of Chemistry, Zhejiang University, People's Republic of China

+ Key Laboratory of Fine Chemical Engineering, Jiangsu Polytechnic University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å R factor = 0.029 wR factor = 0.075 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved In the title compound, Na[Cr(C₄H₅NO₄)₂]·1.5H₂O, the Cr^{III}centered complex anion displays an octahedral coordination geometry formed by two facial iminodiacetate dianions, with two N atoms in a *cis* configuration. The Na⁺ ion is surrounded by one water and five carboxyl O atoms, with Na–O distances of 2.3221 (15)-2.5531 (18) Å. There is an extensive hydrogenbonding network in the crystal structure.

Comment

The iminodiacetate dianion (IDA) and its alkyl-substituted derivatives with an alkyl substituent on the N atom form several stable 2:1 metal complexes, in which each tridentate IDA ligand forms two five-membered chelate rings with the central metal ion (Nesterova *et al.*, 1979; Mootz & Wunderlich, 1980; Suh *et al.*, 1997). The title compound, (I), has been obtained recently in this laboratory.

The asymmetric unit of (I) consists of two Cr^{III} complex anions, two Na⁺ ions and three water molecules (Fig. 1). The Cr^{III}-centered complex anions display an approximately octahedral coordination. Two IDA ligands facially chelate to each Cr atom, with two N atoms in a *cis* configuration. The *cis* geometry was also reported for potassium bis(iminodiacetato)chromate (Mootz & Wunderlich, 1980), although a trans configuration was observed in sodium bis(iminodiacetato)cobaltate (Nesterova et al., 1979) and in sodium bis(methyliminodiacetato)chromate (Suh et al., 1997). The two IDA ligands in each complex anion form four five-membered chelate rings with the Cr atom. Two rings show envelope conformations, with the N atoms at the flap positions displaced out of the mean planes of other four atoms by 0.3784 (14) (O11-ring) and 0.5305 (15) Å (O17-ring) in the Cr1 complex, and by 0.5255 (16) (O21-ring) and 0.4588 (16) Å (O27-ring) in the Cr2 complex. The other two chelate rings in both Cr1 and Cr2 complexes are planar, the maximum atomic deviation being 0.0817 (18) Å (C13).

Each Na^+ atom is surrounded by one water and five carboxyl O atoms, in a distorted octahedral coordination. The Na1-O and Na2-O distances are 2.3427 (16)–2.4179 (15)

metal-organic papers

Figure 1

The structure of the asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2

A packing diagram of (I). Dashed lines indicate hydrogen bonds between Cr^{III} complex anions. The coordination bonds for Na⁺ atoms and hydrogen bonds involving water molecules have been omitted for clarity.

and 2.3221 (15)-2.5531 (18) Å, respectively (Table 1). Thus, the Cr^{III} and Na⁺ centres are bridged by IDA ligands and water molecule O1W to form a polymeric structure. An extensive hydrogen-bonding network occurs in the crystal structure (Table 2). While uncoordinated water molecules (O2W and O3W) form hydrogen bonds with carboxyl groups, as shown in Fig. 1, $N-H \cdots O$ hydrogen bonds exist between imino and carboxyl groups of neighboring Cr complexes (Fig. 2).

Experimental

An ethanol solution (6 ml) containing benzimidazole (0.24 g, 2 mmol) and CrCl₃·6H₂O (0.27 g, 1 mmol) was mixed with an aqueous solution (4 ml) containing IDA (0.13 g, 1 mmol) and Na₂CO₃ (0.10 g, 1 mmol) at room temperature. The mixture was then refluxed for 1 h and filtered. Purple crystals of (I) were obtained from the filtrate after 2 d.

Crystal data

$Na[Cr(C_4H_5NO_4)_2] \cdot 1.5H_2O$	$D_x = 1.807 \text{ Mg m}^{-3}$
$M_r = 364.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 10968
a = 15.5805 (15) Å	reflections
b = 16.8464 (16) Å	$\theta = 2.8-54.0^{\circ}$
c = 10.2030 (12) Å	$\mu = 0.94 \text{ mm}^{-1}$
$\beta = 90.742(2)^{\circ}$	T = 295 (2) K
V = 2677.8 (5) Å ³	Plate, purple
Z = 8	$0.38 \times 0.33 \times 0.11 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID	6141 independent reflections
diffractometer	4824 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -20 \rightarrow 20$
$T_{\min} = 0.702, \ T_{\max} = 0.900$	$k = -21 \rightarrow 21$
11982 measured reflections	$l = -13 \rightarrow 13$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0467P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.075$ S = 0.986141 reflections 388 parameters

Table 1

Selected geometric parameters (Å).

Cr1-O13	1.9443 (13)	Na1-O12	2.3437 (16)
Cr1-011	1.9442 (12)	Na1-O18 ⁱ	2.3704 (15)
Cr1-O15	1.9585 (13)	Na1-O14 ⁱⁱ	2.3818 (16)
Cr1-O17	1.9603 (12)	Na1-O26	2.4017 (15)
Cr1-N11	2.0758 (15)	Na1 - O1W	2.4131 (17)
Cr1-N12	2.0757 (14)	Na1-O28 ⁱⁱ	2.4179 (15)
Cr2-O27	1.9468 (12)	Na2-O28 ⁱⁱⁱ	2.3221 (15)
Cr2-O25	1.9528 (13)	Na2-O16	2.3589 (15)
Cr2-O23	1.9550 (13)	Na2-O22 ^{iv}	2.3659 (17)
Cr2-O21	1.9593 (13)	Na2-O24 ^v	2.3879 (15)
Cr2-N21	2.0686 (14)	Na2-O18 ^{vi}	2.4376 (17)
Cr2-N22	2.0715 (15)	$Na2 - O1W^{vii}$	2.5531 (18)

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (ii) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (iii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) 1 + x, y, z; (v) $1 + x, \frac{3}{2} - y, z - \frac{1}{2}$; (vi) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (vii) 1 - x, 1 - y, 1 - z.

lable 2		
Hydrogen-bonding geometry	(Å,	°).

D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.91	2.18	3.0799 (18)	173
0.91	2.08	2.9174 (18	152
0.91	2.10	2.9958 (19)	169
0.91	2.32	3.1809 (19)	157
0.97	1.83	2.799 (2)	177
0.86	2.04	2.895 (2)	174
0.86	2.13	2.975 (2)	167
0.92	1.98	2.847 (3)	158
0.87	2.22	2.896 (2)	135
0.87	1.99	2.807 (3)	155
	<i>D</i> -H 0.91 0.91 0.91 0.91 0.97 0.86 0.86 0.92 0.87 0.87	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.91 & 2.18 \\ 0.91 & 2.08 \\ 0.91 & 2.10 \\ 0.91 & 2.32 \\ 0.97 & 1.83 \\ 0.86 & 2.04 \\ 0.86 & 2.13 \\ 0.92 & 1.98 \\ 0.87 & 2.22 \\ 0.87 & 1.99 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (ii) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (vi) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (vii) 1 - x, 1 - y, 1 - z; (viii) $-x, y - \frac{1}{2}, \frac{1}{2} - z.$

Water H atoms were placed in theoretical positions (Nardelli, 1999) and included in structure-factor calculations with fixed positional parameters and U_{iso} values of 0.05 Å². Other H atoms were placed in calculated positions, with C-H = 0.97 Å and N-H =

0.91 Å, and included in the final cycles of refinement in the riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Dr Jian-Ming Gu for assistance in data collection.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mootz, D. & Wunderlich, H. (1980). Acta Cryst. B36, 445-457.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- Nesterova, Y. M., Polynova, T. N., Porai-Koshits, M. A., Kramarenko, F. G. & Muratova, N. M. (1979). *Zh. Strukt. Khim.* **20**, 960–966.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC & Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432–434.