Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong Li, Duan-Jun Xu* and Kai-Liang Yin†

Department of Chemistry, Zhejiang University, People's Republic of China

+ Key Laboratory of Fine Chemical Engineering, Jiangsu Polytechnic University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.029$
$w R$ factor $=0.075$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Sodium cis-bis(iminodiacetato- $\kappa^{3} N, O, O^{\prime}$)chromate(III) sesquihydrate

In the title compound, $\mathrm{Na}\left[\mathrm{Cr}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cr}^{\mathrm{III}}$ centered complex anion displays an octahedral coordination geometry formed by two facial iminodiacetate dianions, with two N atoms in a cis configuration. The Na^{+}ion is surrounded by one water and five carboxyl O atoms, with $\mathrm{Na}-\mathrm{O}$ distances of 2.3221 (15)-2.5531 (18) \AA. There is an extensive hydrogenbonding network in the crystal structure.

Comment

The iminodiacetate dianion (IDA) and its alkyl-substituted derivatives with an alkyl substituent on the N atom form several stable 2:1 metal complexes, in which each tridentate IDA ligand forms two five-membered chelate rings with the central metal ion (Nesterova et al., 1979; Mootz \& Wunderlich, 1980; Suh et al., 1997). The title compound, (I), has been obtained recently in this laboratory.

The asymmetric unit of (I) consists of two $\mathrm{Cr}^{\text {III }}$ complex anions, two Na^{+}ions and three water molecules (Fig. 1). The $\mathrm{Cr}^{\text {III }}$-centered complex anions display an approximately octahedral coordination. Two IDA ligands facially chelate to each Cr atom, with two N atoms in a cis configuration. The cis geometry was also reported for potassium bis(iminodiacetato)chromate (Mootz \& Wunderlich, 1980), although a trans configuration was observed in sodium bis(iminodiacetato)cobaltate (Nesterova et al., 1979) and in sodium bis(methyliminodiacetato)chromate (Suh et al., 1997). The two IDA ligands in each complex anion form four five-membered chelate rings with the Cr atom. Two rings show envelope conformations, with the N atoms at the flap positions displaced out of the mean planes of other four atoms by 0.3784 (14) (O11-ring) and 0.5305 (15) \AA (O17-ring) in the Cr 1 complex, and by 0.5255 (16) (O21-ring) and 0.4588 (16) \AA (O27-ring) in the Cr 2 complex. The other two chelate rings in both Cr 1 and Cr 2 complexes are planar, the maximum atomic deviation being 0.0817 (18) A (C13).

Each Na^{+}atom is surrounded by one water and five carboxyl O atoms, in a distorted octahedral coordination. The $\mathrm{Na} 1-\mathrm{O}$ and $\mathrm{Na} 2-\mathrm{O}$ distances are 2.3427 (16)-2.4179 (15)

Received 21 July 2003 Accepted 23 July 2003 Online 31 July 2003

Figure 1
The structure of the asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
A packing diagram of (I). Dashed lines indicate hydrogen bonds between $\mathrm{Cr}^{\mathrm{III}}$ complex anions. The coordination bonds for Na^{+}atoms and hydrogen bonds involving water molecules have been omitted for clarity.
and 2.3221 (15)-2.5531 (18) \AA, respectively (Table 1). Thus, the $\mathrm{Cr}^{\mathrm{III}}$ and Na^{+}centres are bridged by IDA ligands and water molecule $\mathrm{O} 1 W$ to form a polymeric structure. An extensive hydrogen-bonding network occurs in the crystal structure (Table 2). While uncoordinated water molecules (O2W and O3W) form hydrogen bonds with carboxyl groups, as shown in Fig. 1, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exist between imino and carboxyl groups of neighboring Cr complexes (Fig. 2).

Experimental

An ethanol solution (6 ml) containing benzimidazole $(0.24 \mathrm{~g}$, $2 \mathrm{mmol})$ and $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~g}, 1 \mathrm{mmol})$ was mixed with an aqueous solution (4 ml) containing IDA ($0.13 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.10 \mathrm{~g}, 1 \mathrm{mmol})$ at room temperature. The mixture was then refluxed for 1 h and filtered. Purple crystals of (I) were obtained from the filtrate after 2 d .

Crystal data

$\mathrm{Na}\left[\mathrm{Cr}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=364.20$
Monoclinic, $P 2_{1} / c$
$a=15.5805$ (15) A
$b=16.8464$ (16) \AA
$c=10.2030$ (12) A
$\beta=90.742(2)^{\circ}$
$V=2677.8$ (5) \AA^{3}
$Z=8$
$D_{x}=1.807 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10968 reflections
$\theta=2.8-54.0^{\circ}$
$\mu=0.94 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, purple
$0.38 \times 0.33 \times 0.11 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.702, T_{\text {max }}=0.900$
11982 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.075$
$S=0.98$
6141 reflections
388 parameters

6141 independent reflections
4824 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-21 \rightarrow 21$
$l=-13 \rightarrow 13$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0467 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Cr} 1-\mathrm{O} 13$	$1.9443(13)$	$\mathrm{Na} 1-\mathrm{O} 12$	$2.3437(16)$
$\mathrm{Cr} 1-\mathrm{O} 11$	$1.9442(12)$	$\mathrm{Na} 1-\mathrm{O} 18^{\mathrm{i}}$	$2.3704(15)$
$\mathrm{Cr} 1-\mathrm{O} 15$	$1.9585(13)$	$\mathrm{Na} 1-\mathrm{O} 14^{\text {ii }}$	$2.3818(16)$
$\mathrm{Cr} 1-\mathrm{O} 17$	$1.9603(12)$	$\mathrm{Na} 1-\mathrm{O} 26$	$2.4017(15)$
$\mathrm{Cr} 1-\mathrm{N} 11$	$2.0758(15)$	$\mathrm{Na} 1-\mathrm{O} 1 W$	$2.4131(17)$
$\mathrm{Cr} 1-\mathrm{N} 12$	$2.0757(14)$	$\mathrm{Na} 1-\mathrm{O} 28^{\mathrm{ii}}$	$2.4179(15)$
$\mathrm{Cr} 2-\mathrm{O} 27$	$1.9468(12)$	$\mathrm{Na} 2-\mathrm{O} 28^{\text {iii }}$	$2.3221(15)$
$\mathrm{Cr} 2-\mathrm{O} 25$	$1.9528(13)$	$\mathrm{Na} 2-\mathrm{O} 16$	$2.3589(15)$
$\mathrm{Cr} 2-\mathrm{O} 23$	$1.9550(13)$	$\mathrm{Na} 2-\mathrm{O} 22^{\text {iv }}$	$2.3659(17)$
$\mathrm{Cr} 2-\mathrm{O} 21$	$1.9593(13)$	$\mathrm{Na} 2-\mathrm{O} 24^{\text {v }}$	$2.3879(15)$
$\mathrm{Cr} 2-\mathrm{N} 21$	$2.0686(14)$	$\mathrm{Na} 2-\mathrm{O} 18^{\text {vi }}$	$2.4376(17)$
$\mathrm{Cr} 2-\mathrm{N} 22$	$2.0715(15)$	$\mathrm{Na} 2-\mathrm{O} 1 W^{\text {vii }}$	$2.5531(18)$

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $1+x, y, z ;(\mathrm{v}) 1+x, \frac{3}{2}-y, z-\frac{1}{2}$; (vi) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (vii) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 17{ }^{\text {vi }}$	0.91	2.18	3.0799 (18)	173
N12-H12...O11 ${ }^{\text {vi }}$	0.91	2.08	2.9174 (18	152
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O} 27^{\text {ii }}$	0.91	2.10	2.9958 (19)	169
$\mathrm{N} 22-\mathrm{H} 22 \cdots \mathrm{O} 21^{\text {ii }}$	0.91	2.32	3.1809 (19)	157
$\mathrm{O} 1 W-\mathrm{H} 11 \mathrm{~W} \cdots \mathrm{O} 2 W$	0.97	1.83	2.799 (2)	177
$\mathrm{O} 1 W-\mathrm{H} 21 W \cdots \mathrm{O} 15^{\text {vii }}$	0.86	2.04	2.895 (2)	174
$\mathrm{O} 2 W-\mathrm{H} 12 W \cdots \mathrm{O} 25$	0.86	2.13	2.975 (2)	167
$\mathrm{O} 2 W-\mathrm{H} 22 W \cdots \mathrm{O} 3 W$	0.92	1.98	2.847 (3)	158
$\mathrm{O} 3 W-\mathrm{H} 13 W \cdots \mathrm{O} 23^{\text {viii }}$	0.87	2.22	2.896 (2)	135
$\mathrm{O} 3 W-\mathrm{H} 23 W \cdots \mathrm{O} 22$	0.87	1.99	2.807 (3)	155

Symmetry codes: (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vi) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (vii) $1-x, 1-y, 1-z$; (viii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Water H atoms were placed in theoretical positions (Nardelli, 1999) and included in structure-factor calculations with fixed positional parameters and $U_{\text {iso }}$ values of $0.05 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=$
$0.91 \AA$, and included in the final cycles of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Jian-Ming Gu for assistance in data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Mootz, D. \& Wunderlich, H. (1980). Acta Cryst. B36, 445-457.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Nesterova, Y. M., Polynova, T. N., Porai-Koshits, M. A., Kramarenko, F. G. \& Muratova, N. M. (1979). Zh. Strukt. Khim. 20, 960-966.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. \& Oh, M.-R. (1997). Acta Cryst. C53, 432-434.

